3.272 \(\int \frac{\sqrt{a-b x^2}}{\sqrt{-c-d x^2}} \, dx\)

Optimal. Leaf size=194 \[ \frac{\sqrt{a} \sqrt{1-\frac{b x^2}{a}} \sqrt{\frac{d x^2}{c}+1} (a d+b c) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right ),-\frac{a d}{b c}\right )}{\sqrt{b} d \sqrt{a-b x^2} \sqrt{-c-d x^2}}+\frac{\sqrt{a} \sqrt{b} \sqrt{1-\frac{b x^2}{a}} \sqrt{-c-d x^2} E\left (\sin ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )|-\frac{a d}{b c}\right )}{d \sqrt{a-b x^2} \sqrt{\frac{d x^2}{c}+1}} \]

[Out]

(Sqrt[a]*Sqrt[b]*Sqrt[1 - (b*x^2)/a]*Sqrt[-c - d*x^2]*EllipticE[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/
(d*Sqrt[a - b*x^2]*Sqrt[1 + (d*x^2)/c]) + (Sqrt[a]*(b*c + a*d)*Sqrt[1 - (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Ellipti
cF[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/(Sqrt[b]*d*Sqrt[a - b*x^2]*Sqrt[-c - d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.128482, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {423, 427, 426, 424, 421, 419} \[ \frac{\sqrt{a} \sqrt{1-\frac{b x^2}{a}} \sqrt{\frac{d x^2}{c}+1} (a d+b c) F\left (\sin ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )|-\frac{a d}{b c}\right )}{\sqrt{b} d \sqrt{a-b x^2} \sqrt{-c-d x^2}}+\frac{\sqrt{a} \sqrt{b} \sqrt{1-\frac{b x^2}{a}} \sqrt{-c-d x^2} E\left (\sin ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )|-\frac{a d}{b c}\right )}{d \sqrt{a-b x^2} \sqrt{\frac{d x^2}{c}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a - b*x^2]/Sqrt[-c - d*x^2],x]

[Out]

(Sqrt[a]*Sqrt[b]*Sqrt[1 - (b*x^2)/a]*Sqrt[-c - d*x^2]*EllipticE[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/
(d*Sqrt[a - b*x^2]*Sqrt[1 + (d*x^2)/c]) + (Sqrt[a]*(b*c + a*d)*Sqrt[1 - (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Ellipti
cF[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/(Sqrt[b]*d*Sqrt[a - b*x^2]*Sqrt[-c - d*x^2])

Rule 423

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 427

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*x^2]
, Int[Sqrt[a + b*x^2]/Sqrt[1 + (d*x^2)/c], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sqrt{a-b x^2}}{\sqrt{-c-d x^2}} \, dx &=\frac{b \int \frac{\sqrt{-c-d x^2}}{\sqrt{a-b x^2}} \, dx}{d}+\frac{(b c+a d) \int \frac{1}{\sqrt{a-b x^2} \sqrt{-c-d x^2}} \, dx}{d}\\ &=\frac{\left (b \sqrt{1-\frac{b x^2}{a}}\right ) \int \frac{\sqrt{-c-d x^2}}{\sqrt{1-\frac{b x^2}{a}}} \, dx}{d \sqrt{a-b x^2}}+\frac{\left ((b c+a d) \sqrt{1+\frac{d x^2}{c}}\right ) \int \frac{1}{\sqrt{a-b x^2} \sqrt{1+\frac{d x^2}{c}}} \, dx}{d \sqrt{-c-d x^2}}\\ &=\frac{\left (b \sqrt{1-\frac{b x^2}{a}} \sqrt{-c-d x^2}\right ) \int \frac{\sqrt{1+\frac{d x^2}{c}}}{\sqrt{1-\frac{b x^2}{a}}} \, dx}{d \sqrt{a-b x^2} \sqrt{1+\frac{d x^2}{c}}}+\frac{\left ((b c+a d) \sqrt{1-\frac{b x^2}{a}} \sqrt{1+\frac{d x^2}{c}}\right ) \int \frac{1}{\sqrt{1-\frac{b x^2}{a}} \sqrt{1+\frac{d x^2}{c}}} \, dx}{d \sqrt{a-b x^2} \sqrt{-c-d x^2}}\\ &=\frac{\sqrt{a} \sqrt{b} \sqrt{1-\frac{b x^2}{a}} \sqrt{-c-d x^2} E\left (\sin ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )|-\frac{a d}{b c}\right )}{d \sqrt{a-b x^2} \sqrt{1+\frac{d x^2}{c}}}+\frac{\sqrt{a} (b c+a d) \sqrt{1-\frac{b x^2}{a}} \sqrt{1+\frac{d x^2}{c}} F\left (\sin ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )|-\frac{a d}{b c}\right )}{\sqrt{b} d \sqrt{a-b x^2} \sqrt{-c-d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0539043, size = 92, normalized size = 0.47 \[ \frac{\sqrt{a-b x^2} \sqrt{\frac{c+d x^2}{c}} E\left (\sin ^{-1}\left (\sqrt{-\frac{d}{c}} x\right )|-\frac{b c}{a d}\right )}{\sqrt{-\frac{d}{c}} \sqrt{\frac{a-b x^2}{a}} \sqrt{-c-d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a - b*x^2]/Sqrt[-c - d*x^2],x]

[Out]

(Sqrt[a - b*x^2]*Sqrt[(c + d*x^2)/c]*EllipticE[ArcSin[Sqrt[-(d/c)]*x], -((b*c)/(a*d))])/(Sqrt[-(d/c)]*Sqrt[(a
- b*x^2)/a]*Sqrt[-c - d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 111, normalized size = 0.6 \begin{align*}{\frac{a}{bd{x}^{4}-ad{x}^{2}+bc{x}^{2}-ac}\sqrt{-b{x}^{2}+a}\sqrt{-d{x}^{2}-c}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{-{\frac{b{x}^{2}-a}{a}}}{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{-{\frac{bc}{ad}}} \right ){\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2),x)

[Out]

(-b*x^2+a)^(1/2)*(-d*x^2-c)^(1/2)*a*((d*x^2+c)/c)^(1/2)*(-(b*x^2-a)/a)^(1/2)*EllipticE(x*(-d/c)^(1/2),(-b*c/a/
d)^(1/2))/(b*d*x^4-a*d*x^2+b*c*x^2-a*c)/(-d/c)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-b x^{2} + a}}{\sqrt{-d x^{2} - c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-b*x^2 + a)/sqrt(-d*x^2 - c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-b x^{2} + a} \sqrt{-d x^{2} - c}}{d x^{2} + c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-b*x^2 + a)*sqrt(-d*x^2 - c)/(d*x^2 + c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a - b x^{2}}}{\sqrt{- c - d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x**2+a)**(1/2)/(-d*x**2-c)**(1/2),x)

[Out]

Integral(sqrt(a - b*x**2)/sqrt(-c - d*x**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-b x^{2} + a}}{\sqrt{-d x^{2} - c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-b*x^2 + a)/sqrt(-d*x^2 - c), x)